// This is the first in a series of programs that lead up to the

// final sensor handling oUserClass that will be used by the

// Sumo Robot program.

//

// This first program just looks at the left most line sensor.

// When the program is run click on the oA2d: oSensorLineLeft

// object to bring up the object window to examine the values

// from the sensor. (Be sure not to double-click, it will crash

// the program) oA2d was used instead of the oIRPD1 because it

// only has a bit value that depends on the on-off characteristic

// of the sensor and would need a mechanical or electrical

// adjustment to sense the white line and not get fooled by brown

// or small surface scratches.

//

// Notice how the numbers range from high to low as the

// sensor is moved from black paper to white paper.

//

//-------------------------- A note about style ------------------------

// Constants are readable words that are substituted for a number.

// It would make the code hard to read if you had to refer to a

// schematic every time you wanted to check on what a sensor was doing

// The convention I like to use when referring to a particular I/O or

// sensor input is to use the Noun Adjective Adjective convention. That is

// to say when referring to a Sensor, the noun sensor comes first then a

// what type adjective followed by another and another until the sensor is

// fully described. Because variables cannot have spaces or special

// characters the name for the sensor that detects a line and is on the

// left side would be SensorLineLeft. If you keep this convention you

// will not have to remember "Did I call it RightLineSensor or LineSensorR?"

//

// Remember first comes What is it (Sensor, Motor, Servo, Light...)

// Next What kind (Line, Blue,)

// Next Where (Left, Right, Front,)

//

// Do you recognize the old who, what and where we are all familiar with?

// Now we make a sub routine to setup the I/O lines. (Line in this case)

// The subroutine needs a name and a type. Because we are not returning

// a value to the calling program, we use the Void.

// Next we give it a name. Again use the Noun adj. adj.

// The who is I/O lines. We cannot use a / character so just leave it

// out. What are we going to do to the I/O lines? Set them up for use

// So a good name would be IOSetup

// Notice how this main program has no loop but it still allows

// reading of the oA2d object. This is because objects and virtual

// circuits made of objects are updated in a special object loop.

// This loop is part of the oopic firmware and is constantly run

// outside of the program you write. It is the reason that it is

// recommended that programmers utilize as many objects and virtual

// circuits as practical. They just run more efficiently than added

// in-line code.

// Now let's connect the rest of the sensors. We just simply repeat

// the code in the previous step but change the adjective describing

// which new sensor we want to add the objects.

// Notice how all the new objects have the same object type oA2D.

// this is because each new object takes on the same code structure

// as oA2D but is put in a new place in memory. That is to say that

// oSensorLineLeft has the same code located in a different location

// in program memory. Or more accurately it has the same property

// structure located in a different part of memory. As the program

// object loop comes to each new object, it takes the object property

// and member and runs it all in the same oA2D program space. This is

// what is meant by making reusable code.

// My testing has shown that on the black Sumo surface

// most readings are close to 255, brown is around 117

// and scratches seldom read below 35. The white line at the edge

// of the ring always read less that 15. So, we will use 15 as the

// meaning of white.

// Start with a compare object. The oCompare with one

// reference would not compile so the oCompare2 object

// was used

// Let's use a oBit object so that we can see using

// the debug tools. The debug tools cannot see

// the output of a compare or wire object. We can

// use the oBit object later in the program to make

// decisions about the line sensors

// In order to "Link in" a value to the oCompare object

// we need to create an object that can accept a value

// then link that value into the oCompare object

// Constants are names for numbers used in a program. It makes reading

// and understanding the program much easier.

// To create virtual circuits, build up the new behavior

// using building blocks to create something new.

//

// Starting with the sensor we already made using the

// oA2dx object we will link its properties to another

// object. If you examine the properties of objects

// you will notice two basic types of data types Pointer

// and Data. The Pointer data types can accept a link

// form other objects. That is the basic comunication

// method. Usually in the C language you can use the

// *, & and ptr to work with pointers. The oopic

// compiler depends on .Link as a pointer.

//

// Notice that all objects need the .Operate object to

// be set to True in order to function.

// The output value from the oA2dx object is the .Value property

// It will be used later to link to the compare object

// The first line here uses the .Link to connect the .Value

// property of the oA2dx object to the .Input of the oCompare

// object. Look up the .Input property of oCompare and you will

// find the data type to be pointer.

// The .Fuzziness property of oCompare is byte. You cannot

// .Link to this property but rather set the value directly

//

// The .Fuzziness property is kind of a window that floats

// above and below the reference level. It is used to prevent

// noise from triggering on values near the reference level.

// Again the oCompare object did not work as in the documentation

// So, we used a oCompare2 object and set both references to

// the same value.

// The oWire object here connects the oCompare object to

// its input using the .Link property and its output to

// the oDio1 object also using the .Linp property

// The above objects do not work with the debug tools. We

// use this oBit object to examine the affects of the above

// code. The status of this object will be used in the

// program to check for the white line

// Now complete the remaining virtual circuits

// My testing has shown that on the black Sumo surface

// most readings are close to 255, brown is around 117

// and scratches seldom read below 35. The white line at the edge

// of the ring always read less that 15. So, we will use 15 as the

// meaning of white.

// Define Eye Sensor objects

// in my testing the oIRPD1 object had some noise problems

// where once in a while it would suddenly report an object

// that was not there. The oA2dx worked better but tended

// not to work around zero very well. The oA2d object tended

// to be a bit myopic but that is more of an advantage than

// a problem. In the Sumo ring the robot should only respond

// to close objects. Far away objects tend to be outside of

// the ring and should be ignored. The oA2d object did not

// appear to have the noise problem and was chosen instead.

//

// Just as in the line sensor we will use a comparator and wire

// object to a bit object as a detect when an opponent is near.

//

// In my opinion the eyes should not look straight forward because

// when fighting moving forward is the action to push the opponent

// out of the ring. This is the same motion one would use to find

// an opponent. It would make more since to use the eyes to the side

// because an opponent to your side would be grounds for a

// different action than go forward. The new action would be to turn

// into the opponent.

// The oServoSp1 is an object to move a modified servo.

// For beginning robotics a modified servo is an easy

// and relatively inexpensive way to have a controlled drive

// motor. Because of the way the servo works, it is difficult

// to make an effective speed control. The servo will be either

// full on or stopped. A PWM controlled motor on the other hand

// can be made to move at a crawl to full speed with fine in-between

// adjustments.

//

// A modified servo motor is easily adjusted to find zero point by

// turning the potentiometer with a zero move value. This program

// alternates a move between 1 and -1. When I wrote the same program

// with move values of zero in Basic, the servo would move. In C

// a value of zero made the servo not move no matter where the pot was

// set.

// This is the first time we had the program do anything. The

// While loop evaluating 1 is a way to make an infinite loop.

// When the program gets here it will execute the six lines of

// code continuously. The code sets the move value for the servo motors

// to the smallest setting in the positive direction then the negative

// direction. With the servo taken apart one can adjust the pot such

// that the servo motor barley move at all. On re-assembly the servo may

// start to move. As long as the movement is very small, it should be OK.

// This program moves each servo in the forward direction

// and stops. Notice how one servo uses negative numbers

// This is because the servos are mounted in opposite directions,

// so backward is forward to the other

// Now let's make some pre defined moves. Here is a list of

// basic moves:

// TurnLeftfast -> Servos turn in opposite directions left

// TurnRightFast -> same as left only turns right

// TurnLeftSlow -> Only right servo moves making a left turn

// TurnRightSlow -> Same as left only turns right

// GoForwardFast -> Both servos move in a forward direction

// GoReverseFast -> Both servos reverse

// GoForwardSlow -> Not so useful go forward

// GoReverseSlow -> Not so useful reverse

// Stop -> No movement

//

// You may notice that how long is not included. The how long will

// come from the calling program.

//

// Now we will take this servo program and combine it with the sensor

// program created earlier. The two programs will become the oUser

// object for the Sumo Program.

// This is the completed oUser class. The calling program will

// use the following as interfaces to this program

//

// Sensor data:

// Left Sensor -> oSensorLineLeftBit -> True = White line on Left

// Center Sensor -> oSensorLineCenterBit -> True = white Line center

// Right Sensor -> oSensorLineRightBit -> True = White Line on Right

//

// Eye Date:

// Left Eye -> oSensorEyeLeftBit -> True = Object detected by Left eye

// Right Eye -> oSensorEyeRightBit -> True = Object detected by right eye

//

// Servo Commands:

// Use sub "Move(XXXXXX)" where XXXXXX is one of the following

//

// Move(TurnLeftfast);

// Move(TurnRightFast);

// Move(TurnLeftSlow);

// Move(TurnRightSlow);

// Move(GoForwardFast);

// Move(GoReverseFast);

// Move(GoForwardSlow);

// Move(GoReverseSlow);

// Move(Stop);

